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The structure of shock waves is investigated for the case of multicomponent and multi- 

phase mixtures containing a neutral gas and ( dzi - 1 ) grades of charged particles ; each 
grade is characterized by its own mobility coefficient. The interaction parameter is ar- 
bitrary. The analysis is made for the case of small Frandtl numbers when the tempera- 
ture of the medium can be considered constant and for the case of large Prandtl num- 
bers when heat conducting processes can be neglected. As in conventional electrohyd- 

rodynamics [l], the solution of the structure problem for an electrohydrodynamic shock 

wave depends substantially on the velocity direction, the electric field and on the cur- 
rent density ahead of the wave front. For definiteness, everywhere throughout the follow- 

ing analysis it is assumed that the velocity normal component ur > 0 ahead of theshock 
wave front. It is shown, that if the electric field ahead of the wave has a component 

normal to the front of the shock wave 11’, > 0, there is always a shock wave structure 
and the electric field at the wave front is continuous. If E, < 0 and the current den- 
sities of all components are positive, a shock wave structure does not occur for all values 

of parameters ahead of the wave front. If the structure exists, then it follows from the 

analysis that the electric field at the wave front is either continuous or discontinuous. 
In the latter case the electric field and velocity components normal to the wave front 
are related behind the wave front by the equation z~rt + b,E,, = if, where b, is the 
greatest mobility coefficient of the mixture components. The surface charge at the 

shock wave front is caused by a sharp increase in the charge density of the mixture 
component having the greatest mobility coefficient, As follows from the shock wave 
analysis, in the case when E, < 0 and current densities of all components are negative, 
the electric field at the shock wave front is continuous. if ahead of the wave front the 

sum ur + b,E, 5: 0 (bN is the smallest mobility coefficient of the components). If 

the sum aI + b,E, = u, the field at the wave front may suffer a discontinue. In order 
to determine the parameters behind the wave front, one of the parameters behind the 
wave must be specified. If, moreover, behind the wave front urr + b,E,, # 0, then 
the velocity ahead of the wave is greater and behind it smaller than the speed of sound. 

If urr + b,EII = 0 then the gas velocity ahead of and behind the shock wave front is 
supersonic. The existence of this kind of shock wave structure was pointed out in con- 
ventional electrohydrodynamics [l] for one grade of charged particles. When the motion 
of a multicomponent medium is considered, the component with the smallest mobility 
coefficient acts as that with one grade of charged particles. When E, < 0 and the cur- 
rent densities of the components have different signs, the shock wave structure does not 
exist for all parameter values ahead of the wave front. Let the current densities jz, 
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j3, . * *t ip be negative and jP+i, iP+2, . . ., iN -positive. The form of additional rela- 
tions which close the system of equations of the shock wave front can be found by ana- 
lyzing the wave structure. Moreover, there are some cases when the electric field at the 
shock wave front is either continuous or discontinuous and the parameters be- 
hind the wave front or ahead of the wave, are expressed by the relarions uII -r 

bp+rErl = 0 or ur + b,E, = 0, respectively. In the latter case one of the parameters 
behind the wave front must be specified in order to determine the remaining parameters. 

Moreover, if uII + bpE,, #O, the velocity ahead of the shock wave front is supersonic 
and behind it - subsonic. There exists a shock wave structure in which ahead of the 
wave front the sum u1 + b,L‘, =c and behind the front uII + b,E,,=O,. and the gas velo- 
city ahead of, and behind the shock wave front is supersonic. From the analysis of the 
shock wave structure, if the structure exists, it follows that in the case of a negative field 

(EI < 0) and currents of different signs, there exists a type of shock wave for which, 

ahead of the front and behind it, the parameters of the medium satisfy the equations 
ur i- bPEI = 0 and err + bP+IEII = 0. The gas velocity ahead of the wave is superso- 
nic and behind the wave - subsonic. The density distribution of the total bulk charge 
inside the structure of such waves has twomaxima. The first maximum is caused by an 

increase in the charge density of p-grade of charged particles (changes in charge densi- 
ties of other components are small), the second maximum - by an increase in the charge 
density of ( p f 1 ) grade of charged particles, while there is only a small change in the 

charge density of the remaining components. Shock waves of this type can be formed 
only in mixtures containing charged particles of different grade; they do not exist in 
conventional electrohydrodynamics. 

1. Let US consider (applying the electrohydrodynamic approximation) a stationary 
flow of a multicomponent or multiphase medium - of a gas and (N - 1) grade of ions 
or charged particles. We shall denote by a subscript a(~= 2, 3, . . . . N) parameters 

relating to the corresponding grade of charged particles. We direct the IC coordinate 
axis along the stream velocity and assume that the electric field has a single component 
parallel to the axis. Let all parameters of flow be dependent only on z. To define a 

flow of charged particles or drops, if those are present, we use the diffusion approxima- 

tion [2]. Equations defining this flow allowing for viscosity and heat conduction (see 
also [l-3]) can be written as 

(1.1) 

(1.2) 

P = G”, 2 = con& 

u ’ -+ - QE, f&J, = qz (E + R,,u) (1.3) 
q= 

J,=const, c1=2,... ,N 

The dimensionless parameters from Eqs. (l.l)-(1.3) are given by formulas 
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Here p*, U* , P*, T* are the dimensional density, velocity, pressure and temperature of 

the medium, respectively; qa* > 0, j a*, E*, cp* are. respectively, the dimensional bulk 

charge density, the current density, the electric field intensity and the electric potential, 
b, is the mobility coefficient of charged particles of o-grade; q, x are the coefficients 

of viscosity and thermal conductivity of the mixture (in the subsequent analysis the va- 

lues of b,, r~, 3c are considered constant) ; cpt cg are the specific heats, I is the 
length of the mean free path. 

By the zero subscript we denote the parameters of a particular point of the stream at 
which the terms appearing in the left-hand sides of the second of Eqs. (1.1) and of the 
first of Eqs. (1, Z&and related to viscosity and thermal conductivity, can be neglected, 
The integration constants II and Z defined by flow parameters at this point are 

(1.5) 

According to the law of conservation and Maxwell’s equations, the system of relations 

at the shock wave front in a multiphase medium is not closed, similarly as in conven- 
tional electrohydrodynamics [ 1, 31. The missing relation in conventional electrohydro- 

dynamics was obtained in @] for the case of small and in Cl] for the case of an arbitrary 

interaction parameter. In the electrohydrodynamics of multiphase media corresponding 
relations for a small interaction parameter were derived in [Z, 4],and for the case of a 

large interaction parameter and small Prandtl numbers in [5]. In the latter case it can 
be assumed that the temperature of the medium is constant and the first equation of 
(1.2) replaced by T = 1. 

Below, the structure of a shock wave is analyzed and the equations are found which 
close the system of relations at the shock wave front in a multicomponent or multiphase 
medium for the case of an interaction parameter for any quantity of components when 
Prandtl number Pr > 1, which corresponds to a low thermal conductivity of the mix- 
ture, 

Neglecting in the first equation of (1.2) the term with the derivative dT / d< , assum- 
ing 9, = cp,, [l] and using the second equation of (1, l), we obtain the expression for 
the gas temperature 
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T = y (y - 1) Mo2 (V2 u2 - SE2u - I-h + 2) (1.6) 

Let us examine the behavior of the integral curves from Eqs. (1.1). (1.3) and (1.6) 
in the semi-plane uE, u> 0. We divide the flit equation of (1.3) by the second 

equation of (1.1) in which the temperature T is expressed by (1. G),and we obtain 

Assuming qa* > 0, the value 

le,( =4nq,*~IR,,J,I IEo*I-=Ci 

and coefficients b, > ba > . . . > b N in the all region of flow, and 1 R0.v 1 > 
1 RqcN_lj 1 > . . . > 1 R, I . Let at the beginning E,* < 0. The lines Lclja = 0 

and LC2) = 0 are the isoclines on which the integral curves of Eq. (1.7) have vertical 

tangents (dE / du = m). These lines,the behavior of which is determined by para- 

meters Y, MO, R,, and S, we denote by L& and Lt2y ,respectively. The form of 

the line Lc2jo was examined in Cl]. In Figs. l-5 the case is shown, when in the plane 
uE the line L(s)’ for u> 0, E > 0 has one branch with an extremum at the point 

u,, Em. All results are easily generalized to the case of a different position of Lc2y. 
The form of the line LQ)‘, on which the velocity is equal to the speed of sound, was 
also investigated in [l]. The intersection of this line with L(,p is only possible at 
extrema of the line Lt2y (if they exist). If Lc2,” and LcsJo intersect, then the parts 
of Lc2jo lying in the interval u < u,, are in the subsonic region and those in the in- 
terval u > U, are in the supersonic region; the velocity at the point of intersection 
is sonic, One of the possible behaviors of the line Lc3jo is shown in Fig. 1 by a dashed 

line. In the other figures this line is not shown in order to have more readable graphs. 
Applying reasoning analogous to that given in [l], we obtain that lines Lilp and 

L(2j0 can intersect either at one point lying in the subsonic or supersonic region or at 

three points - Figs. l-5. In the latter case all points may be situated in the super- 
sonic region -Figs. 2,4,5 ; or two of them are in the supersonic and one in the sub- 
sonic region - Figs. 1, 3. The coordinates of the points of intersection are determined 
by the following equations: 

E = - Rqau 

SR&U~-+~+(~+&-S)-(&++)~~ 

Then we shall examine the behavior of the integral curves of Eqs. (1.7) only in those 

regions where they have a physical meaning. Integral curves which run below the iso- 
cline LPI), between the iso’clines L&, and L&,+, and those above the isocllne L&. , 
define flows for i, > 0 (Fig. 1); for jp < 0, jp+l > 0 (Figs, 3 -5) and for ja < 0 
(Figs. 1, 2). respectively (everywhere a = 2, 3, . ..N, 2\(pg(N-l)).Inorder 
not to complicate the graphs , only two from ( N - 1 ) L&, isoclines are shown, nam- 
ely: L& and LG,,,, ; they correspond to the components with the greatest and the 
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smallest mobility coefficients in Fig. 1,and &,, L&,+l i,n Figs. 3-B. 

2, Let us consider a mixture flow when ja > 0, a = 2, . . . , A:. Integral curves 
defining such a flow lie below the isocline ,$,,(Fig. 1). The direction of motion along 
the integral curves is shown by arrows in Fig. 1. An investigation of the shock waves 
shows that the form of the relations obtained for the wave structure depends substantially 
on the position of the isoclines L,," and L&. We shall consider the most interesting 
case when the lines Lczjo and L& intersect at three points As, Bs and C, (the point 
C, is not shown in Fig. i) ; the point A, is in the subsonic, while B, and C, are in the 
supersonic region, We denote the electric field value of these points by &,, Ebs, E,,. 
We consider that these parts of the integral curves in the super- and subsonic regions, 

where integral curves run in the &-neighborhood of L,,,“,and represent a gas flow ahead 

of and behind the shock wave, respectively. Points at which integral curves (for e --, 0 ) 
leave the E -neighborhood of the isocline Lc2p' , correspond to the states ahead of the 
shock wave. Point at which, for e ---f 0 , integral curves enter the E -neighborhood of 

the isocline Lc2,“, correspond to the states behind the shock wave. Parts of integral 
curves which are parallel to the axis IX = 0 and to the isocline ,& , describe the struc- 
ture of the electrohydrodynamic shock wave. We denote by numerals I and I I the field 

values ahead of and behind the shock wave, respectively. By analysis analogous to that 
in [l], it can be shown that the integral curves with a field EI < Ea2,, ahead of the 
wave front,define the shock wave structure with a continuous field at the wave front. 

If E,,<-%<E,,, then the integral curves on which the selected value of a field 
ahead of the wave front lies, describe a shock wave structure with a discontinuous elec- 
tric field and the formation of a surface charge at the wave front. To find the value of 

the surface charge at the wave front, i.e. to close the system of relations at the front of 

the shock wave. it is necessary to use the following equations: 

uII* + b2EII* = 0, (2.1) 

The surface charge at the wave front is caused by a sharp increase in the charge den- 

sity of the component with the highest mobility coefficient. Integral curves leaving the 
isocline Lczjo above the point C, and intersecting the line Llzjo, do not run along it 

afterwards - there is no region corresponding to an inviscid flow. Such integral curves 
do not define a shock wave structure. It is noted,that algebraic relations following from 
the law of conservation at the front of the shock wave permit a jump from a state corre- 
sponding to the part described of the isocline Lczjo ( inviscid flow) to the state determ- 

ined by the part of the isocline L (Q’ lying in the subsonic region (also defining an in- 
viscid flow). Everything said above indicates that the shock waves of such type do not 
possess a structure. 

In the case when the isoclines L&, Lczjo intersect only at the point A, of the sub- 

sonic region, the field at the shock wave front is continuous and the surface charge is 

equal to zero.if EI < E,,. If EI > Ea2, then integral curves on which the selected 

value of an electric field lies, describe a shock wave structure with a discondnuity of 
the electric field and the formation of a surface charge at the wave front. To determine 

the value of this surface charge, i.e. to close the system of relations at the shock wave 

front, it is necessary to use Eqs. (2.1). 
In the case when the isoclines L& and L cajo intersect at points in the supersonic 
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region, there are no integral curves defining the shock wave structure. 

8, Let us consider a mixture flow when ja < 0, a = 2 . . . N. The isocline L&v 
corresponds to a component with the smallyt mobillity coefficient. Integral curves de- 
fining such a flow lie above the isocline L~)N (Fig. 1, 2). The form of the relations 
obtained from the examination of the shock wave structure depends substantially on the 
position of the lsoclines L&N and Ltzy. It follows from the third equation of (1.3) that 

IR,, J < 1, a = 2, . . . , N. The lines &.,“ and L& may have either three points 
or-one point of intersection. In the latter case the point of intersection lies in the super- 
sonic region. 

In Fig. 1 we have the case when the isoclines L&V and &~p intersect at three points 
Aill, BN, CN ; the point AN lies in the subsonic region and point BN and CJy in the 
supersonic region of the plane uE. We denote the values of the electric field at the 
points AN ,BN and C, by Eon, l&v and Ecp , respectively (&N < EON < &N). 
We assume that behind the wave front the eledtric field intensity satisfies the inequality 

Eax<&<Em (3.1) 

Integral curves on which the selected value of the electric field El1 can lie, define 
a shock wave structure with a d~~ntinuo~ electric field at the wave front [l]. Para- 
meters ahead of the wave front satisfy the relation 

ui* + b.vEI* = 0 (4m == En* + 26x* I bx) (3.2) 

The electric field behind such a discontinuity can have any values satisfying inequal- 
ities (3.1). To determine flow parameters behind the shock wave front when the para- 
meters ahead are known and the condition (3.2) is fulfilled, one of the parameters behind 
the wave fromt must be specified. We note that the value of the electric field behind 
the wave front should be within the limits determined by the inequality (3.1). The ex- 
istence of this kind of shock waves in conventional electrohydrodynamics in the case of 
a small interaction parameter was indicated in [6]. If the electric field behind the shock 
wave front satisfies the inequa~~ EbN < EII < Ecu, then there is a ~ntinuo~ elecs 
sic field at the front of the shock wave and the surface charge intensity is equal zero. 

Let us examine some examples of flows in the case when the isoclines Lczja and Lyl,,V 
intersect in the supersonic region. We denote the intersection points by AN, BN , CN 
in the case of three points,and by AN in the case of one point of intersection, It is not 
difficult to see that in the case of three intersection points of the isoclines LF1,, and 
L,,,“(Fig. 2) lying in the supersonic region, the electric field at the shock wave front is 
continuous, if behind or ahead of the wave front the inequllties ELN <. EII < E,N , 
EI < Eat are satisfied, respectively. The field undergoes a discontinuity, if behind 
the wave front the inequalities EaN sg E,, < E bN are satisfied; parameters ahead of the 
discontinuity front satisfy Eqs. (3.2). To determine the flow parameters behind theshock 
wave front when parameters ahead of it are related by (3.2), one of the parameters be- 
hind the wave front must be specified. In addition, the value of the electric field behind 
the wave front must be held within the limits defined by the inequalities Ea,y < EII < 
EON. The gas velocity is subsonic in all the cases mentioned above. There exists a set 
of integral curves leavine the small neighborhood of the point BN with a slope equal 
to the slope of the line J$,,v. Below the point B ,V such integral curves run along the 
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isocline && to the point AN and then along the irocline .C&. (In Fig. 2 the corres- 
ponding integral curve is shown as a dashed line). Such integral curves define a structure 
of shock waves, parameters of which ahead of and behind the wave front are related by 

the equations ul* + bN E,* = 0, 1 = I, 11 ; the velocity behind the front of wave 
(as.well as ahead of the wave) is supersonic and equal to the larger root of the equation 
LC2) (u, EaN) = O.We note that there exists a shock wave structure for which the velo- 
city behind the wave front is subsonic and equal to the smaller root of the equation 

J&J (u, Ear) = 0; the field behind the wave front Err ~~ Ea,v, while ahead of the 
front it satisfies the relation (3.2). 

let the isoclines L.rz), Ltl:N have only a single point of intersection lying in the super- 
sonic region. We assume that the field ahead of the wave front satisfies the inequality 

El < I?,,lv. Integral curves on which the selectedvalue of the electric field can lie, 

define the structure of the shock wave with a continuous field. Other shock waves having 
structure do not exist in this case. 

4. Let us consider the flow when ja < 0 for CL L 2. :i, . . . ,p and jc( > 0 for 

CL z p -I- 1, . . . . , N. In Fig. 3 the rsochnes LtzJo, .Ly !, and L;)1,,,,, are constructed. 
. . 

Integral curves defining such a flow are disposed between the isoclines LF,,,,,,, and 

G,P. Investigation of the shock wave structure shows that the form of relations for this 
structure depends substantially on the position of the isoclines LF, ,n+l, LTllp and L&. 
It follows from the third equation of (1.3) that j R,, 1 <( 1 for cc == 2, 3, . . . ,p and 

j R,,, / > 1 for a = 11 ‘- 1, p -I- 2, . . . .A’. The isoclines Z,t.LT and L;;,,, , aswell 

as LC2)” and L~,p,,, may have either three points of intersection, two of which or all 

three are in the supersonic region, or a single intersection point ; the latter can lie in 

either the sub- or supersonic region. 

4.1. Let the isocline L(2)’ have three points of intersection with the isoclines L(:,, 

and .&,+r : AI,, B,, Cp and AT,+l, Bp+lr CIl+l , respectively. We denote the value 

of the electric field at points of intersection A,, B,,, C,, and A,,_r, BIiil. cI,I1 by 

Jr&, &PI EclJ and Enp+t, Er,r,+il ECp+rt respectively. In Fig. 3 points A I, and AI,+l 
lie in the subsonic region ; moreover, the inequality EnP+l << E,,, is satisfied. 

We denote by the numeral I the integral curve which for e -. 0 emerges with zero 
slope from the small neighborhood of the point B,, . and by the numeral I I - the integ- 
ral curve which enters the small neighborhood of the point Ap+l with zero slope (in 
Fig, 3 shown by dashed lines). Integral curves leaving the neighborhood of line L,2j” with 

zero slope between the points B, and Br,+r (the field ahead of the shock wave front 

satisfies the inequality E,,, cd< El ( E,,l,+l) run to the isocline L:,,,,,, , then turn, go 
along the isocline and intersect the line L,,; in the neighborhood of the point A,,,. 
These integral curves define the structure of a shock wave with a jump of the electric 
field ai the wave front. To close the system of equations at the shock wave front it is 

necessary to use the conditions 

urr* + bptlEII* = 0, &IS = - UII* I OptI - Er* (4.1) 

Below the integral curve I there are integral cuves defining the structure of the shock 
waves with a jump of the electric field at the wave front,and which ahead of the wave 

front are characterized by 

ur* + b,EI* :z 0 (EI = - ??,,,ur) (4.2) 
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Integral curves below the line I I intersect the isocllne Lizjo between points A P and 

A p+l. To find the state behind the front of such shock waves, one of the parameters 
behind the wave front must be specified. In partucular. the value of the electric field 

can be specified within the limits E,, < EIr < Eap+l. 
There existsa set of integral curves defining the structure of shock waves for which, 

inside the structure, the density distribution of the total bulk charge has two maxima. 

These integral curves lie between the lines I and I I. They all emerge from the neigh- 
borhood of the point B,, run along the isocline L&,, move from it, run with a small 

angle of inclination to the isocline J$)~+~, turn and enter its &-neighborhood to inter- 
sect the isocline L(s)’ in the c-neighborhood of the point Ap+i. One such integral curve, 

curve I I I , is shown in Fig. 3. Ahead of the front of shock waves represented by the in- 
tegral curves defined above, the sum EI + Rqpq = 0, and behind the front the sum 

EII t &+PII = 0. Ahead of the front of such a shock wave the velocity is super- 

sonic and behind it - subsonic. Shock waves of this type can be found only in the media con- 
taining several grades of charged panicles and cannot exist in conventional electrohydro- 
dynamics. The first maximum in the density distribution of a bulk charge inside the 

wave structure is caused by an increase in charge density q,(charge densities qi, i # p, 
undergo small changes), the second maximum is caused by an increase in charge den- 
sity qP+l (charge densities qit i # p + 1, change insignificantly). 

If the field ahead of the wave front satisfies the inequality EC,+, < EI .< EcP, 
there is no structure of shock waves. 

We shall now consider the case when E,,+l > Ebp. We assume that the field ahead 

of the shock wave front satisfies the inequality Eap+l < E, < Ebp+l. Then at the shock 

wave front the electric field suffers a discontinuity. The parameters behind the wave 

front satisfy the first relation of (4.1). Let the field behind the shock wave front satisfy 
the inequalities E,,<E,, < Ebp, then ahead of the wave front the condition (4.2) is ful- 
filled and the surface charge is formed at the wave front. In the case when one of the 
following inequalities is satisfied : 

Em < E, G Eap+l’ Ew < 4, < Eap+l 

the field at the wave front is continuous and the surface charge intensity ie equal zero. 
Let us consider the case when the isoclines L;)lk,+i and L ” (2) c have one point of inter- 

section A P+l in the subsonic region, while the isoclines L(i), and L(s)” have three points 

of intersection AD, BP, ,Cp and one of them lies in the subsonic region. In this case in 
order to find the surface charge, the results of Sect. 4.1 can be used replacing EbP+l by 

B:cP in the inequalities Ebp 4 Er < Ebp,i, Eapil < Er < Ebp+i 
4.2. Let us consider the case when all three points of intersection of the isoclines 

LM’ and J%,, are in the supersonic region and one of the points of intersection of the 

isoclines Lczjo and LTl)p+l lies in the subsonic region; moreover, we assume EaP+l < 

E by and -f&p < &p+l (Fig. 4). By numerals I and I II we denote integral curves 
which for E - 0 leave with zero slope the small neighborhood of points B, and A, , 
respectively, and by the numeral I I - integral curve which enters the small neighbor- 
hood of the point AP+i with zero slope. Integral curves emerging, for E - 0 , with 

zero slope from the neighborhood of the line LczJo between points BP and BP+1 (the 
field ahead of the shock wave fror$ satisfies the inequality EbP < Er < EbPfl), run 
with zero slope to the isocline &Jp+lr then along it and intersect the isocline Lczjo in 
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the neighborhood of the point Ap+l. To close the system of equations at the shock 
wave front and to calculate the bulk charge intensity, Eqs. (4.1) are used. 

Below the integral curve I I I lie integral curves which define the structure of shock 

waves with a continuous electric field at the wave front (73, < EI < Eap). 
Between the lines I and I I I there are integral curves defining the structure of shock 

waves in which parameters ahead of the wave front are related by formulas (4.2). All 
these integral curves emerge from the neighborhood of the point B, and first runalong 
the isocline LFIJp. We note that the integral curves lying between lines I and II define 
a shock wave structure in which the parameters of the medium ahead of the wave front 

satisfy the equation UI -+ b,Ei = 0 and behind the front - the relation urr + 
b,+,EII = 0. Ah ea o t e s oc wave front the velocity is supersonic and behind the d f h h k 
front - subsonic. Inside the structure of such shock waves the bulk charge density dis- 
tribution has two maxima. The first maximum of the density distribution in the bulk 
charge is caused by an increase in the charge density qP (changes in charge densities 

4i, i # p are small), the second maximum is caused by an increase in charge density 
:~~+i (changes in charge densities qi, i # p + 1 , are small). Shock waves of this type 

are possible only in the electrohydrodynamics of a multiphase medium and are impos- 
sible in the electrohydrodynamics of charges particles of a single grade.Among the in- 

tegral curves emerging from the small neighborhood of the point B, with an inclina- 

tion equal to that of the isocline LE,, , 
the isocline LTijp 

there is a set of integral curves which run along 
to the point A, and then along the isocline &j”. Such integral 

curves define a shock wave structure with parameters ahead of and behind the wave front 
which are related by the equation ul* f b,E, * = 0, 1 = I, II ; the velocity behind 
the wave front (as well as ahead of the wave) is supersonic and equal to the larger root 

of the equation LcZ) (u, Eap) = 0. We note that there exists a structure of the wave 
for which the velocity behind the wave front is subsonic and equal to the smaller root 

of the equation LcZ, (u, Eap) = 0; the field behind the wave front Err = E,,,. and 
ahead of the wave satisfies the relation (4.2). Integral curves, situated between lines I I 

and I I I define a shock wave structure in which parameters ahead of the front are related 
by (4.2). To close the system of relations at discontinuities, the structure of which is 
defined by such integral curves, it is necessary to specify one of the parameters behind 
the wave front; in this case the field must be specified within the interval E,, < 

EII < &p+1. If ahead of the wave front ECp+i * cY E, < Ecp, there is no shock wave 

structure. 

In the case when E,, > Eap+l, there is an analogous method of analysis. When 

Ebp -C Er < Et,p+l, Ean,.t < E, < E, . the parameters behind the wave front are rela- 

ted by (4.1). When E, <E, < Eap+t , the field behind the wave front is continuous, etc. 
We shall now consider the case when Eap+l >Ebp. Let the field ahead of the wave 

front satisfy the inequalities Eap+l < EI<Eb,+,. Then at the shock wave front the elec- 
tric field suffers a discontinuity and the parameters behind the front satisfy the first rela- 
tion of (4.1). If behind the wave front the field satisfies the inequality E,p < Err < Ebp, 
the parameters ahead of the front are related by (4.2) and a surface charge is formed at 
the front. In the case when one of the following inequalities is fulfilled 

Em < E, i Eap+l’ EbP d EII< Eap+l’ EI < GP 

the field at the wave front is continuous and the surface charge intensity is equal to zero. 
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There exists a shock wave structure for which, ahead of and behind the wave front, 
the relations El’ + bpul* = 0, I= I, II are fulfilled. The velocity behind the wave 

front (as well as ahead of the wave) is supersonic and equal to the larger root of the equa- 

tion L(a) (u, Eat,) = 0. We note that thereexists a wave structure for which the velocity 
behind the wave front is subsonic and equal to the smaller root of the equation L(,) (u, 
E ClPJ ’ = 0. The field behind the wave front E,, = E,, and ahead of the wave front, satis- 
fies the relation (4.2). If Ecpfl f E, < EcP, a shock wave structure does not exist. 

Let the isoclines _C&, and L& have three points of intersection in the supersonic 

region, while isoclines L(,) o and &,+, have a single point of intersection Ap+l lying 
in the subsonic region, In this case the surface charge can be determined using the results 
of Sect, 4.2 and replacing ~~~~~ by E,, in the inequalities Ebp < E, < Ebp+i, Eaptl < 

% < *b,,tl l 

Now we consider the case when the isoclines Lg)” and L & intersect at a single point 

A, in the supersonic region, and the isoclines L& and L&,ll intersect in the subsonic 

region at the noint AptI , The position of the isoclines differs from that in Fig.4: the 

supersonic branch of the isocline L(,T intersects the isocline L& at the point A, and 

then continues to run below it. Let us assume that ahead of the wave front the field satis- 
fies the inequalities E, <E,,, if E,, f Eap+i or E, < EaP+r, if E,, > E, I. The 
integral curves, on which a selected value of the electric field can lie, define a shock 

wave structure with a continuous field at the wave front. Let us assume that the field 
ahead of the wave front satisfies the inequalities Eaptl < E, < E,,, when Eap> Eap+ls 

The integral curves, on which a selected value of the electric field can lie, define a shock 
wave structure with a discontinuity of the electric field. The field behind the wave front 

must satisfy the first relation of (4.1). In this case there are no other shock waves posses- 

sing structures. 
4.3. Let us consider the case when the isocline L,,p 

A,, B,, C, and AptI, Bp+r, C,+r 

has three p$nts of intersection 
with each of the isoclines Lojp and L&P+l, respec- 

tively, and all three intersection points lie in the supersonic region (Fig. 5). Among the 

integral curves leaving the small neighborhood of point B, with an inclination equal to 

that of the isocline Lyilp, there are integral curves which run along the isocline L& 

to the point A P and then along the isocline LF2,. Such integral curves define a shock 

wave structure with parameters ahead of and behind the wave front related by ur* $- 
b,Et* = 0, 1 = I, II. The gas velocity behind the wave front (as well as ahead of the 

wave) is supersonic and equal to the larger root of the equation LQ, (u, E,,) = 0. 
There are no other integral curves defining a shock wave structure. In fact, integral 

curves which intersect the isocline J&l ’ in the neighborhood of the point A n+i, do not 
run along the isocline at all. In other words, an inviscid flow ahead of the shock wave, 
corresponding to the segment BpBP+t of the isocline Lt,;3,cannot be linked with any 
inviscid flow related to the state behind the shock wave. 

Analogous conclusions can be reached when the isoclines L& and LyrjP+, have a sin- 
gle point of intersection Apil in the supersonic region and the isoclines I~;~) and L& 

intersect at three points A,, B,, C, lying in the supersonic region. In this case theshock 

wave structure exists, and its velocity behind and ahead of the front is supersonic, 
In the case when the isocline LFzt intersects the isocline L,&,+i at a single supersonic 

point and has a single point of intersection with the lsocline &tP lying in the super- 
sonic region, there are no integral curves defining the shock wave structure. 
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We propose a way of obtaining the second and successive approximations in con- 

structing a solution by Chernyi’s method [l-3]. Limiting nonstationary flows of 
an inviscid gas were studied in [4, 51. 

1. We consider the self-similar motion of a gas behind a strong shock wave propa- 
gating according to the law 

z = rv& (s), y = N& (s) (1.1) 

Here 2 and y are Cartesian coordinates, N,, is a characteristic velocity of displacement 
of the shock wave front, and t is time. If we let s denote arc length of the wave front 
in the plane of self-similar variables, then the functions fi and f, must satisfy the con- 
dition f1’2 + fz’2 = 1. In the axisymmetric case we take the z, y plane to be a me- 
ridional plane with the s-axis as the axis of symmetry. 

We assume that all the hydrodynamic characteristics of the flow depend on two vari- 
ables g and q. We write the gasdynamic equations in Lagrangian variables ; by virtue 
of self-similarity, these variables are introduced in the form 


